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Figure 1. Exemplary shape reconstructions from a single image by our Matryoshka network based on nested shape layers.

Abstract

In this paper, we develop novel, efficient 2D encod-
ings for 3D geometry, which enable reconstructing full 3D
shapes from a single image at high resolution. The key idea
is to pose 3D shape reconstruction as a 2D prediction prob-
lem. To that end, we first develop a simple baseline network
that predicts entire voxel tubes at each pixel of a reference
view. By leveraging well-proven architectures for 2D pixel-
prediction tasks, we attain state-of-the-art results, clearly
outperforming purely voxel-based approaches. We scale
this baseline to higher resolutions by proposing a memory-
efficient shape encoding, which recursively decomposes a
3D shape into nested shape layers, similar to the pieces of
a Matryoshka doll. This allows reconstructing highly de-
tailed shapes with complex topology, as demonstrated in ex-
tensive experiments; we clearly outperform previous octree-
based approaches despite having a much simpler architec-
ture using standard network components. Our Matryoshka
networks further enable reconstructing shapes from IDs or
shape similarity, as well as shape sampling.

1. Introduction

Being able to reason about the 3D shape of objects, even
when presented with only a single monocular image, is one
of the remarkable abilities of the human visual system. In
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the absence of geometric cues from stereopsis or motion,
our visual system is still able to infer detailed surfaces or
plausibly complete hidden parts.

The advent of large-scale shape collections [4] and ad-
vances in data-driven approaches, especially convolutional
neural networks (CNNs), have sparked new interest in de-
veloping approaches that mimic the human visual system
in its ability to reconstruct 3D shapes from a single image,
e.g. [5, 15, 20, 22, 27, 31]. The predominant structure of
CNNs employed for this task is an hourglass shape with an
encoder, which transforms a single image into a shape code,
and a decoder finally producing a 3D shape [5, 10]. Inter-
preting the shape code as a multi-dimensional tensor with
spatial and feature dimensions, the decoder successively in-
creases the spatial resolution of the shape code while reduc-
ing the number of feature dimensions. The output of the
decoder is a volumetric binary occupancy map. The overall
down-sampling and up-sampling of representations in this
hourglass architecture facilitates the accumulation of shape
information from the whole image and propagating it to all
parts of the reconstructed shape. Higher resolutions of the
input and/or output require more levels of scaling, which
results in deeper networks. The network depth is in turn
bound by the available GPU memory, impeding CNNs with
volumetric decoders in their ability to reconstruct shapes at
high resolution [11, 22, 27].

More efficient encodings, for example based on octrees
[11, 22, 27], alleviate this problem, but require sophisti-
cated structures and mechanisms for feature propagation
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through the decoder, impeding portability across deep lean-
ing frameworks and exploration of alternative architectures.
Alternatively, view-based reconstructions [18, 25] can en-
code highly detailed shape information, but cannot repre-
sent shapes with a significant level of self-occlusion.

In this paper, we develop a novel, efficient 2D encod-
ing for 3D geometry, which enables reconstructing full 3D
shapes from a single image at high resolution. We begin
by developing a new architecture for dense 3D shape recon-
struction at low resolutions. Its key feature is that we pose
reconstructing 3D voxel occupancy as a 2D prediction prob-
lem by directly predicting whole voxel tubes at every pixel
of a reference view. This allows us to use a wide range
of standard networks for 2D pixel-prediction tasks, which
enables this simple baseline to attain state-of-the-art accu-
racy, clearly outperforming previous purely voxel-based ap-
proaches. Another factor in reaching such high accuracy
levels is using a structured loss function.

We then scale this baseline to higher resolutions by
proposing an efficient shape encoding based on the idea
of nested shape layers. That is, the object shape is recur-
sively decomposed into nested layers, similar to the pieces
of a Matryoshka doll, see Fig. 4. This has several key ad-
vantages: (1) it allows for a highly detailed reconstruction
of shapes with complex topology, including self-occlusions;
(2) each shape layer can be represented through a set of six
depth maps, which is memory efficient and allows the use of
standard network architectures; (3) nested shape layers lead
to more detailed reconstructions than octree-based architec-
tures despite being much simpler. We further demonstrate
the capabilities of the proposed encoding and decoder ar-
chitecture in reconstructing shapes from IDs or shape simi-
larity, as well as in shape sampling.

2. Prior Work
With the advent of large-scale shape collections [4],

data-driven methods, and especially CNNs, have become
the method of choice for predicting 3D shapes. Insprired by
the success of CNNs for dense 2D prediction tasks, Wu et
al. [31] adapted CNNs to volumetric outputs. Yan et al. [33]
and Zhu et al. [34] showed that optimizing projections of
the predicted shape benefits the reconstruction. Choy et
al. [5] developed a joint approach for shape reconstruction
from one or multiple views. Girdhar et al. [10] combined
an autoencoder and a convolutional network to learn an em-
bedding of images and 3D shapes. Wu et al. [30] trained
a generative adversarial network to synthesize 3D shapes.
Tulsiani et al. [28] learned a shape decoder from 2D super-
vision. Wu et al. [29] used intermediate 2.5D shape rep-
resentations in order to decouple image encoding and 3D
shape decoding. All have in common that they model 3D
shapes as binary occupancy maps. This allows for cast-
ing shape estimation as a classification problem at the voxel

level and benefitting from the extraordinary performance of
CNNs in classification tasks. Representing each voxel sep-
arately to facilitate the classification task comes at a price,
however, as the memory requirements scale cubically with
the resolution of shapes. Consequently, the output resolu-
tion is usually limited to 32 voxels along each side.

Riegler et al. [22] addressed the memory requirements
of predicting high-resolution occupancy maps by adapting
CNNs to operate on octrees. However, their method re-
quires the tree structure to be known ahead of time, which
limits its applicability for 3D reconstruction. The works
of Tatarchenko et al. [27] and Häne et al. [11] alleviate
this problem by also predicting the tree structure. Besides
commonly requiring custom network layers [22, 27], which
impedes porting the approaches to other deep learning li-
braries, the sparse structure of octrees complicates feature
propagation to neighboring cells. This is in contrast to the
proposed method, which only requires network layers that
are standard in all common deep learning frameworks and,
by building on 2D convolutions, facilitates the easy explo-
ration of recent advances in network architectures.

Fan et al. [8] addressed the sparse structure of shapes
within a 3D volume by explicitly predicting a point cloud.
Their method demonstrated impressive results at low reso-
lution, but it has yet to be seen if and how well this approach
scales to higher resolutions.

As an alternative to a volumetric representation,
Tatarchenko et al. [26] trained a CNN to generate RGB-
D images from arbitrary views of an object. In a post-
processing step, the different views are merged into a con-
sistent shape. Following this approach for the generation of
shapes, Soltani et al. [25] predicted pairs of silhouettes and
depth images for a fixed set of views, and Lun et al. [18]
additionally predicted surface normal maps. The final fu-
sion of views has been addressed by merging them into
a point cloud and pruning outliers using the predicted sil-
houettes [25], registering views and solving an optimiza-
tion problem [18], as well as learning a differentiable depth
map renderer to produce consistent projections [17]. In gen-
eral, view-based methods are able to generate shapes at high
resolutions, but occasionally suffer from noisy estimates,
which need to be addressed in the fusion step. Furthermore,
view-based methods cannot handle large self-occlusions.
Our proposed method addresses the fusion step and han-
dling of occlusions in a simple, but efficient formulation.

Sinha et al. [24] projected object surfaces to geometry
images in order to build on image-based CNN architec-
tures. This shape representation allows for a very memory-
efficient encoding, but requires additional care for handling
different mesh topologies and projective distortions pro-
duce a non-uniformly distributed level of detail. Zou et
al. [35] assembled 3D shapes from volumetric primitives.
Our work, in contrast, is inspired by depth peeling [7] and



constructive solid geometry [13]. Gallup et al. [9] used a n-
layer heightmap representation to constrain the reconstruc-
tions of buildings from occupancy grids. Our nested shape
layers can be seen as a generalization of this representation
as our Matryoshka networks effectively estimate 6 overlap-
ping heightmaps per layer, which are fused together.

In concurrent work, Delanoy et al. [6] explored the pre-
diction of multi-channel depth maps in the context of re-
constructing aligned shapes from sketches, which allows for
exploiting additional projective constraints.

3. Formulation
We develop a framework for memory-efficient prediction

of 3D shapes in two stages. First, we encode 3D shapes as
n-channel images, where each pixel represents a tube of n
voxels in a 3-dimensional tensor (a fiber along the z-axis).
This leads to a more memory-efficient intermediate repre-
sentation, since features are shared across entire fibers in-
stead of a single voxel (cell). To that end, we adapt network
architectures for dense pixel-prediction tasks to predicting
voxel tubes. This reduces the memory footprint of the net-
work, but still produces a dense binary occupancy map in
the last network layer. Second, we further compress the out-
put by predicting nested shape layers that can encode shapes
with arbitrary amounts of self-occlusion. Each shape layer
consists of 6 depth maps, c.f . Fig. 4. Through careful align-
ment of the depth maps and an appropriate loss function, we
avoid noisy estimates, a costly fusion via optimization, and
minimize the dimensionality of the final network layer.

3.1. Standard voxel decoder

To ground our discussions, let us begin by describing a
simple standard architecture for predicting volumetric bi-
nary occupancy maps, as it is common to a wide range of
previous work [5, 10, 33]. We here focus our discussion on
the decoder and assume that its input, a shape code S with
a spatial resolution of ns×ns×ns and nf features, is pro-
vided by an image encoder. Each layer of the voxel decoder
then up-samples the shape code, i.e. it increases the spatial
resolution while decreasing the number of features until the
full spatial resolution no×no×no has been reached and only
one feature dimension is left. The resulting 4-dimensional
tensor is then interpreted as a 3D binary occupancy map.
Intuitively, the voxel decoder transforms a 4-dimensional
tensor into 3-dimensional tensor by iteratively lowering the
feature resolution. Fig. 2 (left) shows an illustration.

3.2. Predicting voxel tubes

To address the memory inefficiency of such a standard
voxel decoder, we here propose to predict entire voxel
tubes. The key idea is that we interpret the shape code as
a 3-dimensional tensor with spatial dimensions nt×nt and
one feature dimension. Analogously to the voxel decoder,
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Figure 2. Memory-efficient geometry decoders. Encoding fea-
tures jointly per voxel tube turns a standard voxel decoder (left)
into a voxel tube image decoder (middle). Predicting shape layers
(right) allows for reconstructing shapes at higher resolution.

we up-sample the spatial resolution while down-sampling
the number of features. Different to the voxel decoder, how-
ever, we reduce the number of features until it equals no.
Hence, the output of our decoder is a 3-dimensional tensor
with resolution of no×no×no. With this simple change in
representation, a fiber of features no longer encodes a single
voxel, but a complete tube of voxels jointly. Therefore, we
term the resulting tensor a voxel tube image. Fig. 2 (middle)
illustrates the architecture. As the proposed decoder now
operates on images instead of voxel grids, we can employ
standard 2D network components for designing the decoder
and take full advantage of recent advances in architectures
for 2D prediction tasks [12, 14, 23, 32].

3.3. Shape layers: Learning to compress voxel tubes

Although sharing features across voxel tubes reduces
the space requirements of the decoder, it is insufficient for
scaling the output resolution by multiple octaves with cur-
rently available GPU architectures. To scale our approach
to higher resolutions, we compress shapes by constructing
them from multiple shape layers, each of which requires
only no × no × 6 activations in the network output. Each
shape layer S ∈ S is the product of fusing 6 depth maps
d = (d−x, d+x, d−y, d+y, d−z, d+z) ∈ D, which represent
a shape as depicted in Fig. 3 (left).

Specifically, each depth map di is an orthogonal projec-
tion imaged from view position vi, which is located at the
center of side i of an axis-aligned unit cube. We assume the
cube to be at the origin, and all views to face the origin.
Shape from depth maps. For each of the three axes, we
now define shapes as

Sx ≡ {(i, j, k) | d−x(j, k) ≤ i ≤ no − d+x(j, k)} (1a)
Sy ≡ {(i, j, k) | d−y(i, k) ≤ j ≤ no − d+y(i, k)} (1b)
Sz ≡ {(i, j, k) | d−z(i, j) ≤ k ≤ no − d+z(i, j)} , (1c)

where the tuple (i, j, k) indexes a cell in a binary occupancy
map of size no×no×no. That is, the shape Sx, for example,
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Figure 3. Fusion of depth maps. We interpret pairs of depth maps taken along three view axes (left) as run-length encoding of geometry
and fuse them to shapes Sx (right, green), Sy (red), and Sz (yellow). Noisy predictions cause a smearing at the shape silhouettes. By
intersecting Sx, Sy , and Sz , we obtain a shape S (white) with outliers removed.

can be thought of as being represented by sending x-axis-
aligned rays through it and recording where they enter the
shape and exit again. Put differently, the pairs (d−x, d+x),
(d−y, d+y), and (d−z, d+z) are effectively run-length en-
codings of the shapes Sx, Sy , and Sz . The colored car
shapes in Fig. 3 (right) illustrate this. Note how a single
shape, say Sz , is not sufficient to represent the car (shown
in yellow), since the geometry of the wheels cannot be re-
covered correctly from this view due to self-occlusion.

Shape fusion. We address this by fusing the three shapes
via their intersection as

S = φ(d) ≡ Sx ∩ Sy ∩ Sz with φ : D → S. (2)

The result is shown as the white car shape in Fig. 3 (right).
This fusion process and the placement of the three orthogo-
nal views vi is motivated by our observation that depth map
predictions are often less accurate near the silhouette of an
object. This is intuitive as the decision whether to assign a
pixel to foreground or background is less certain close to the
silhouette. If we cast the occupancy prediction as a classifi-
cation problem (c.f . Sec. 3.2), we can assess the uncertainty
through the softmax predictions. Depth map prediction is
cast as regression problem here, however, and the network
tends to average multiple plausible predictions. This has
been observed also for point clouds [8]. In regions around
the silhouette, this averaging causes noisy estimates and a
smearing of the shape as can be seen in the colored shapes
in Fig. 3 (right). By placing orthogonal views vi at the sides
of a unit cube, we ensure that regions of high uncertainty in
one view are complemented by regions of low uncertainty
in another. Fusing the shapes Sx, Sy , and Sz through their
intersection thus allows to remove outliers reliably.

3.4. Nested shape layers: Recovering occluded
parts

Representing shapes through a single set of 6 depth maps
cannot possibly recover parts that are occluded from all
three view axes. We address this by building up a shape

S1:L from L nested shape layers by iteratively adding and
subtracting shapes φ(di). This process is inspired by con-
structive solid geometry [13]. Let φ : D → S be the fusion
of a shape from the set of depth maps as defined in Eq. (2).
We then compose shapes via the recursion

S1 ≡ φ(d1) (3a)
S1:2n ≡ S1:2n−1 \ φ(d2n) (3b)

S1:2n+1 ≡ S1:2n ∪ φ(d2n+1), (3c)

where n ∈ N+. We begin the recursion by only fusing depth
maps in the first layer (Eq. 3a), then we subtract shapes in
even layers (Eq. 3b), and add shapes in odd layers (Eq. 3c).
This process allows us to encode complex geometries; Fig.
4 shows an exemplary encoding of a shape into multiple
nested shape layers. Note that the nesting of the shape lay-
ers is akin to Matryoshka dolls (Fig. 4, right), i.e. the first
two shape layers encode the outermost doll, the next two
layers describe the second doll inside the first, and so on.
Learning. To learn to predict nested shape layers, we
need to define the appropriate ground truth depth maps.
To that end, let T1:L ∈ S be the (true) target shape and
π : S → φ(D) be the projection from an arbitrary shape
to the space of shapes that can be represented by the depth
map fusion process φ from Eq. (2). To compute the projec-
tion, we greedily apply a simple ray casting and store the
depth of the first intersection with the shape. The ground
truth is then given by the recursion

T1 ≡ π(T1:L) (4a)
T1:2n ≡ π(T1:2n−1 \ T1:L) (4b)

T1:2n+1 ≡ π(T1:L \ T1:2n). (4c)

Note that although the shapes are encoded recursively, we
train a single network to predict all layers jointly.
How many shape layers do we need? To answer this ques-
tion, we encode shapes from the ShapeNet-core dataset [4]
with a varying number L of layers and compute the inter-
section over union between shapes before encoding (T1:L)



(a) S1:5 = (((S1 \S2) ∪S3) \S4) ∪S5. (b) Matryoshka doll

Figure 4. Composing shapes from nested shape layers. The proposed method reconstructs a shape S1:5 by iteratively adding (S1,S3,S5)
and subtracting (S2,S4) shape layers built from fused depth maps (a). This is akin to the layers of a Matryoshka doll (b).

and after decoding (S1:L). We report results in Tab. 1. We
find that 94.8% of shapes at a low resolution (323, provided
by Choy et al. [5]) can be completely encoded with a sin-
gle shape layer and only 4 shapes require more than 2 lay-
ers. Evaluating shapes from ShapeNet-cars at 1283 (from
Tatarchenko et al. [27]), we find that only 2.6% of shapes
can be completely encoded with just a single shape layer.
This demonstrates the need for a nested representation to
accurately represent shapes at high resolution.

3.5. Loss functions for dense and sparse prediction

As a voxel can either be occupied or empty, the pre-
diction of occupancies within a voxel grid is often cast
as binary classification, minimizing the binary cross en-
tropy [5, 10, 22, 27]. This is in contrast to the metrics com-
monly used for evaluating predictions [2]. Most common is
the intersection over union (IoU), or Jaccard index

IoU(A,B) =
|A ∩B|
|A ∪B| . (5)

The IoU divides number of true positives (the intersection)
by the sum of true positives, false positives, and false nega-
tives (the union). In the context of segmenting a 3D object,
correct foreground predictions are thus effectively weighted
by the size of the true object and the prediction. Conse-
quently, the contribution of a single voxel toward the overall
loss depends on the remaining predictions within the voxel
grid. This is in contrast to the binary cross entropy or typi-
cal regression losses, e.g. L1 or L2, which decompose into
losses of individual voxels (or pixels).

Number of shape layers 1 2 3 4 5

ShapeNet-core 323

Completely reconstructed 94.8 100.0 100.0 100.0 100.0
Mean IoU of reconstruction 99.9 100.0 100.0 100.0 100.0

ShapeNet-cars 1283

Completely reconstructed 2.6 35.2 94.3 99.9 100.0
Mean IoU of reconstruction 97.8 99.9 100.0 100.0 100.0

Table 1. Modeling power of nested shape layers. Percentage
of ShapeNet-core/cars shapes completely reconstructed with given
number of shape layers. Higher resolutions require more layers.

Alternatively, we also consider the cosine similarity

C(A,B) =
A ·B

‖A‖2 ‖B‖2
, (6)

which has been used for learning embeddings, e.g. [3], but
as far as we know not in a reconstruction setting. To adapt
cosine similarity and IoU to our setting, c.f . [1, 2], we define

LC(x̄, ȳ) = 1− 〈x̄, ȳ〉 (7)

LIoU(x̄, ȳ) = 1− 〈x̄, ȳ〉∑
i x̄i + ȳi − x̄iȳi

, (8)

where x̄, ȳ are predicted and ground truth shape each
stacked into a vector and normalized to unit norm. Note
that x̄ is based directly on the softmax outputs.
Loss functions for shape layers. Employing LC and LIoU

(Eqs. 7 and 8) for predicting (nested) shape layers would
require decoding the representation into a voxel grid during
training, thus counteracting the efficiency gains from the
compact representation. We hence opt for a different loss
function for training the prediction of (nested) shape layers.
Estimating depth (or run-lengths) is naturally a regression
task, which we address via a robust L1-penalty. Applying
a regression loss naı̈vely to the full depth map, however,
will bias the network toward background pixels. This has
been addressed in the literature by predicting separate fore-
ground masks [18, 25], requiring an additional channel per
depth map. Avoiding auxiliary outputs, we modify the em-
ployed loss to adaptively weigh foreground and background
regions by computing the average loss separately for fore-
ground and background regions. We further refrain from
forcing background pixels to equal any specific value, as
this would unnecessarily bind model capacity. Thus, we re-
quire background pixels to take on values less than a margin
m, instead. Our modified loss for each pixel then becomes

L′1(x, y) =

{
|x− y| , if y > 0

max(0, x+m), otherwise,
(9)

where x and y are prediction and label for a pixel. We also
experimented with the L2-norm as basis for our modifica-
tion, but observed significantly worse reconstructions.

3.6. Implementation details

Our networks can be structured into an encoder and a
decoder with a bottleneck in the middle (Fig. 2, middle &
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Figure 5. Shapes reconstructed from a single image by our Matryoshka network at different resolutions.
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3D-R2N2 [5] 51.3 42.1 71.6 79.8 66.1 46.6 62.8 54.4 38.1 46.8 66.2 51.3 51.3 56.0
OGN [27] 58.7 48.1 72.9 81.6 70.2 48.3 64.6 59.3 39.8 50.2 63.7 53.6 63.2 59.6
PSGN [8] 60.1 55.0 77.1 83.1 74.9 54.4 70.8 60.4 46.2 55.2 73.7 60.6 61.1 64.0

Ours (voxel tube network) 67.1 63.7 76.7 82.1 74.2 55.0 69.0 62.6 43.6 53.4 68.1 57.3 59.9 64.1
Ours (Matryoshka network) 64.7 57.7 77.6 85.0 75.6 54.7 68.1 61.6 40.8 53.2 70.1 57.3 59.1 63.5

Table 2. Single image 3D shape reconstruction on ShapeNet-core at 323 resolution. We report the mean IoU (%) per category, and the
average IoU over all categories. Our networks outperform all voxel decoder baselines and are competitive with the more complex PSGN.

right). The encoder starts with 2 convolution layers with
interleaved batch normalization and ReLU nonlinearity to
produce 8 initial feature channels while keeping the input
resolution. It is further composed of residual modules [12]
that down-sample the input image to a resolution of 4× 4
while linearly increasing the number of feature channels to
512 (257 for experiments on shapes of a single category
and small resolution, i.e. our ablation study). Each residual
module contains two 3× 3 convolutions, with batch nor-
malization and a ReLU nonlinearity before each convolu-
tion. Downsampling while increasing the number of fea-
ture channels is done in the first convolution layer of each
residual module. Modules altering the spatial resolution al-
ternate with modules operating at the same resolution.

The decoder upsamples again until the desired output
resolution is reached. Mirroring the encoder, the decoder is
also composed of residual modules and decreases the num-
ber of feature channels linearly. For upsampling, the first
convolution is replaced with a transposed convolution. In
all our experiments, we trained using Adam [16] using an
initial learning rate of 0.001 and β1 = 0.9, β2 = 0.999, and
varied the schedule for dropping the learning rate with the
dataset size. We refer to the supplemental for more details.

4. Evaluation
To assess the performance of our geometry prediction

approaches at different tasks, compare them to prior work,
and study the influence of loss functions and network archi-
tectures, we a use a common subset [5, 8, 27] of ShapeNet-
core [4]. The subset consists of nearly 50000 3D shapes
divided into 13 major categories. For all experiments, we
report the intersection over union (IoU) in %.

4.1. Reconstruction from a single view

Comparison to prior work. For evaluating the perfor-
mance of our networks in reconstructing 3D shape from
a single RGB image, we compare to 3 recent approaches
on the ShapeNet-core dataset using the renderings, dataset
split, and ground truth voxel representations provided by
Choy et al. [5]. The renderings feature images of size
137×137 and a uniform sampling of viewpoints. The voxel
representations are of size 32× 32× 32. As preprocess-
ing step, we crop input images to 128× 128 and shuffle
color channels randomly during training. We train a single
network for all shape categories. We compare to different
representative approaches for predicting 3D shapes: (1) 3D-
R2N2 [5] features a dense 3D voxel decoder and an LSTM
to enable reconstruction from one or multiple views; (2) Oc-
tree Generating Networks (OGN) [27] operate on octrees to
exploit sparsity of occupancy maps; (3) Point Set Gener-
ation Networks (PSGN) [8] predict a point cloud using a
stacked hourglass network, a volume prediction network,
and a voxel-based post-processing network.

We show results in Tab. 2. Although conceptually sim-
pler, the dense voxel tube image version of our network out-
performs all voxel decoder-based approaches and is on par
with PSGN, which uses a more complex multi-stage (multi-
network) architecture. Moreover, it is not clear if PSGNs
scale to higher resolutions, whereas this is easily possi-
bly for our networks (see below). Interestingly, the sparse
Matryoshka version of our network, which predicts nested
shape layers, performs only slightly worse than its dense
counterpart and clearly outperforms all voxel decoder base-
lines. This demonstrates the power of our compact image-
based representation for 3D shape.



Method Category 323 643 1283 2563

OGN [27] car 64.1 77.1 78.2 76.6

Ours (Matryoshka) car 68.3 78.4 79.4 79.6
airplane 36.7 48.8 58.0 59.6

table 38.6 42.3 43.5 41.3

Table 3. Single image 3D shape reconstruction for high resolu-
tions. We report IoU (in %) between predictions at several res-
olutions and ground truth shapes at 2563. Predictions at lower
resolution are up-sampled to 2563.

Reconstructing higher resolutions. Low-resolution occu-
pancy maps are naturally limited to a low level of detail
they can represent. To assess the performance of our Ma-
tryoshka network at reconstructing shapes at high resolu-
tion, we compared it to Octree Generating Networks [27],
which are representative for Octree-based approaches. We
follow the experimental setup of Tatarchenko et al. [27]
and predict 3D shapes from ShapeNet-cars at resolutions
of 323, 643, 1283, and 2563 given a single RGB input im-
age. We then up-sample the predictions to a resolution of
2563 voxels and compute the intersection over union with
the ground truth shapes at that resolution. For fair com-
parison, we use dataset split and ground truth shapes pro-
vided by Tatarchenko et al. [27]. Furthermore, we provide
results for 2 additional classes from ShapeNet-core, which
pose different challenges; while the airplane class consists
of shapes with intricate structure, the table class contains
the most samples. We report quantitative results in Tab. 3
and show qualitative examples in Fig. 5. We find that both
methods predict more accurate shapes at higher resolutions.
However, OGN’s performance saturates at 1283 due to the
high complexity of the car class with 7496 samples. For our
method we only observe this effect in the even more com-
plex table category (8509 samples). For all resolutions, the
proposed method clearly outperforms the octree-based ap-
proach despite being based on standard 2D networks, which
can be easily implemented in all popular frameworks. The
benefits of higher resolutions are observed best for the air-
plane class, which shows the biggest relative improvements.

4.2. Ablation studies

To better understand the contribution of individual com-
ponents to the overall performance of our networks, we ex-
amine different base architectures and loss functions. For
our ablation study we use the dataset split and renderings
(64× 64 pixels) from Yan et al. [33], taken from the same
24 viewpoints for each object. For the study of loss func-
tions we train one network per class and for the study of
network architectures, we train one network for all classes.

Network architectures. We investigate several network ar-
chitectures that are known to perform well for dense 2D pre-

Base architecture car chair table mean

Encoder/decoder [19] 73.0 52.5 57.0 60.8
U-Net [23] 74.2 54.8 58.8 62.6
ResNet [12] 75.6 56.8 59.1 63.8
DenseNet [14] 72.3 49.4 55.8 59.2

Table 4. Evaluation of base architectures. Across all categories,
the ResNet-inspired architecture outperforms all other networks
with a significant margin.

Loss function car chair table mean

Binary cross-entropy 75.9 57.8 58.2 64.0
L1 73.6 57.2 57.4 62.7
L2 76.4 58.0 58.7 64.4
Cosine similarity LC 75.7 58.4 59.3 64.5
Approx. IoU LIoU 76.3 58.3 59.5 64.7

Table 5. Influence of loss functions. We report the IoU for our
voxel tube network trained with several loss functions on the car,
chair, and table categories.

diction tasks. As memory consumption is a dominating fac-
tor in the choice of a suitable architecture, we modified all
architectures to fit within 3 GB of GPU memory when pre-
dicting shapes at a resolution of 323 with a mini-batch size
of 128. This leaves sufficient memory budget for scaling
up any architecture to higher output resolutions on a single
GPU. Since some of the base architectures (ResNet [12],
DenseNet [14]) are designed to operate on images, but to
produce a single class label, they require adaptation to gen-
erate dense output. In the interest of space, we defer archi-
tectural details to the supplementary material. We take our
voxel tube network as ResNet-inspired baseline. Remov-
ing residual connections yields an Encoder/Decoder or De-
convolution Network [19]; the introduction of connections
between layers of the same spatial resolution to skip vary-
ing sequences of down- and up-sampling forms a U-Net in-
spired network, c.f . [23]. We report results in Tab. 4. Across
all categories, the ResNet-inspired architecture outperforms
all other networks with a significant margin. Note that, e.g.,
octree-based decoders, in contrast to our approach, cannot
take advantage of this as easily.

Loss functions. To assess how specific loss functions affect
the reconstruction quality for our voxel tube networks, we
evaluate the binary cross entropy, L1-norm, L2-norm, the
negative cosine similarity (Eq. 7), and the negative intersec-
tion over union (Eq. 8). We report results in Tab. 5. We find
that the binary cross entropy is a strong baseline, but per-
forms worse than all other evaluated loss functions except
for the L1-norm, which consistently performs worst. Since
the evaluated architecture constrains activations in the final
layer between 0 and 1, a robust loss is less important. For
all categories, the two proposed losses perform best.



Figure 6. Sampling shapes. By supplying the SfSS-decoder with Gaussian noise, we can draw varied samples from the car distribution.

Figure 7. Shape interpolation. Linearly interpolating the descriptors we feed to the SfSS-decoder produces plausible interpolations of the
generated shapes.

4.3. Other applications

Shape from ID. To assess the ability of our method to
represent highly complex datasets, we follow Tatarchenko
et al. [27] and predict shapes from their Blendswap dataset
at 5123 voxels from a high-level shape ID. We find that our
method is able to reconstruct the dataset at a similar quality
level (97.8% IoU) as OGN [27] (96.9% IoU), but in contrast
to [27] using a 2D representation alone.

Shape from shape similarity and shape generation. We
aim to assess our model’s ability to reconstruct shapes from
high-level information without relying on a specific image
encoder architecture. To that end, we train our network
to generate shapes from a high-dimensional descriptor that
captures shape similarities within a semantic category. We
construct the descriptor by computing a pairwise similar-
ity matrix of 3D models such that an entry at (i, j) rep-
resents the intersection over union between models i and
j of resolution 323 in the ShapeNet-cars dataset. Reduc-
ing the dimensionality of the matrix with PCA while re-
taining 95% of the variance and removing duplicates yields
2424-dimensional descriptors for 7426 remaining shapes.
Trained on 80% of the descriptors to generate shapes at
1283 voxels resolution, our Matryoshka network reaches
a mean intersection over union of 81.1% on the held out
shapes. This Shape-from-Shape-Similarity (SfSS) decoder
can also be used for interpolating between shapes (Fig. 7)
and to synthesize new shapes by supplying a random noise
vector. As shown in Fig. 6, samples drawn from the model
are quite diverse (c.f . Fig. 5 of [25] in contrast).

Reconstruction from real images. To show the applicabil-
ity of our method to real-world images, we give a qualitative
example in Fig. 8, c.f . supplemental for more examples.

Shape from silhouette. In the supplemental material, we
additionally study the ability of our Matryoshka networks
to reconstruct a 3D shape from a single silhouette image.

Figure 8. Qualitative result for 3D shape reconstruction from
real-world images.

5. Conclusion

In this paper, we posed 3D shape reconstruction as a
2D prediction problem, allowing us to leverage well-proven
architectures for 2D pixel-prediction. Both proposed net-
works clearly outperform dense voxel-based approaches at
low resolutions. Our novel efficient encoding based on
nested shape layers, furthermore, allows to scale our Ma-
tryoshka networks to handle reconstruction of shapes at
a high resolution, while outperforming octree-based de-
coder architectures with a considerable margin, despite be-
ing based only on standard network layers. Applications to
shape from ID and shape similarity, as well as shape sam-
pling demonstrated the broad applicability of our approach.

The proposed shape layer encoding requires fewer than 5
layers even for high-resolution shapes. We consequently fix
the maximum number of components in our experiments.
To encode arbitrarily complex objects without requiring re-
training, the required number of components could be pre-
dicted per individual object in a recursive formulation. We
leave this and learning the shape fusion [21] for future work.
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Appendix

A. Network Architecture
Our networks consist of multiple residual modules (c.f .

[12]) as shown in Fig. 9. Across all modules, we keep the
kernel size k and the stride s constant as depicted. For
all convolutions with a kernel size k > 1, we use reflec-
tive padding of size 1. Altering the spatial resolution and
number of feature channels requires special handling of
the identity pathway of the residual modules. For down-
sampling (Fig. 9, middle), we simply drop every other pixel
and initialize the added feature channels as zero using zero-
padding. For up-sampling (Fig. 9, right), we use nearest
neighbor interpolation and a 1× 1 convolution to project
the feature dimension. We experimented with more sophis-
ticated up- and down-sampling alternatives, but found no
significant benefits.

In all experiments with images as inputs, processing
in our networks begins with a feature generation module,
which produces an initial representation with fin feature
channels. This module is equivalent to the residual mod-
ule operating at constant resolution (Fig. 9, left), but with
the first rectified linear unit and identity pathway removed.
Each module is only parametrized by the number of fea-
ture channels added during down-sampling ∆f↓ or removed
during up-sampling ∆f↑, and we pair each up-sampling and
down-sampling module with a subsequent module of same
resolution to form one residual block. Thus, we specify net-
work architectures by a desired number of initial features
f̂in, output features f̂out, features at the bottleneck finner,
number of desired down-sampling blocks d in the decoder,
and residual blocks at the bottleneck b. We match the num-
ber of down-sampling blocks in the encoder with the num-
ber of up-sampling blocks in the decoder. We set it to 3
for an output resolution sout = 32 and increase it by 1 for
every doubling of sout. If input and output resolutions are
different, we add di = log2 sin − log2 sout down-sampling
blocks or do = log2 sout− log2 sin up-sampling blocks ac-
cordingly. For all networks, we scale input images to pow-
ers of 2. We compute the number of feature channels to add
for each down-sampling block as

∆f↓ =

⌊
finner − f̂in

di + d

⌋
, (10)

and adjust the number of initially generated features as

fin = f̂in + (finner − f̂in) mod ∆f↓ (11)

to obtain integral numbers for the number of feature chan-
nels. Analogously, we compute the number of feature chan-
nels added per up-sampling block as

∆f↑ =

⌊
finner − f̂out

do + d

⌋
. (12)

To obtain predictions with the desired number of output
channels (equaling sout for voxel tube networks and the
number of shape layers ×6 for Matryoshka networks) we
simply add a 2D convolution with kernel size 1 as final layer
to our networks. We summarize the architectures and train-
ing schedules used in the individual experiments in Tab. 7.

For a batch size of 128, we start with a learning rate of
0.001 and reduce it by a factor of 10 after drop epochs. For
any different batch size, we scale the learning rate accord-
ingly. All models were trained on a single GPU.

For the ablation studies, we used a voxel tube network
as summarized in the penultimate row of Tab. 7. Since the
networks for the shape-from-silhouette task and the ablation
studies were trained on renderings of smaller resolution and
on a smaller number of categories, we roughly halved the
number of feature channels at the bottleneck (setting it to
257 for an integer ∆f↑).

For the study on network architectures, we refer to the
voxel tube network as described above as ResNet-based net-
work. We remove the identity pathways from all resid-
ual modules to obtain an Encoder/decoder network, and
add skip connections between layers of same spatial res-
olution to obtain a U-Net, c.f . [23]. To adapt the num-
ber of feature channels for the skip connections, we use a
1× 1 2D convolution akin to the identity path of the up-
sampling module in Fig. 9. The DenseNet-inspired version
(c.f . [14]) of our voxel-tube network consists of 7 dense
blocks (B), 2 up-transitions (U) and 3 down-transitions (D)
arranged as BDBDBDBBUBUB. Each dense block con-
tains 2 dense layers with an expansion factor of 16. For
the down-transitions we halve the spatial resolution while
keeping the number of feature channels constant. For the
up-transitions we double the spatial resolution and halve the
number of feature channels.

B. More Results

Shape from silhouette. We investigate the performance of
our Matryoshka network on the task of reconstructing a 3D
shape from a single silhouette image. To that end, we re-
construct the shapes of the 3 categories with the most exam-
ples (chair, car, table) from ShapeNet-core with the dataset
split and shapes from Choy et al. [5]. We obtain silhouettes
from the alpha-channels of the renderings of Choy et al. As
can be seen in Tab. 8, the network performs much better
on cars than on tables or chairs. This can be attributed to
the approximately convex shape of cars, which makes their
silhouette a very effective cue for the overall shape. Com-
pared to the easier setting of reconstructing shapes from a
color image, the network performs remarkably well. Note,
however, that the network for predicting shapes from color
images was trained in a category-agnostic way, making the
prediction considerably harder.
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BN, ReLU

+

Pad 0
Downsample s=2 Conv2DT  f, k=4, s=2

Conv2D    f, k=3, s=1
BN, ReLU

BN, ReLU

+

Conv2D    f, k=1, s=1
Upsample s=2

Figure 9: Residual modules. Each residual module consists of Batch normalization (BN) and Rectified Linear Unit (ReLU)
layers followed by a 2D convolution, except for the up-sampling module where we replace the first convolution with a
transposed convolution. The number of feature channels is denoted as f . Moreover, k denotes the filter size and s the stride.

Network sin sout batch size epochs drop f̂in d finner b f̂out

ShapeNet-all
Voxel tube 128 32 128 45 15 8 3 512 1 32
Matryoshka 128 32 128 40 20 8 3 512 2 128

High resolution
Matryoshka 128 32 128 30 20 8 3 512 0 128
Matryoshka 128 64 128 30 20 8 4 512 3 128
Matryoshka 128 128 32 30 20 8 5 512 1 128
Matryoshka 128 256 8 30 20 8 6 512 0 128

Shape from Silhouette
Matryoshka 64 32 128 40 15 8 3 257 2 32

Shape from ID
Matryoshka 2 512 4 28K 12K – 8 1 0 196

Ablation studies
Voxel tube 64 32 128 40 15 8 3 257 2 32

Shape from Similarity
Matryoshka 1 128 8 60 25 – 7 2424 0 128

Table 7: Network architectures for individual experiments. See text for a description of the network parameters.

Category car chair table mean

Shape from silhouette 86.7 53.2 58.8 66.2

Table 8: Shape from silhouette on ShapeNet-core.

Real-world images. To assess the performance of our
proposed network for real world examples, we tested it on
images from the Stanford Products Dataset [37] (chairs) and
the web (cars). Qualitative examples are shown in Fig. 10
(chairs) and Fig. 11 (cars). In both cases, we trained a
category-specific Matryoshka network to predict 3D shapes
at 1283 resolution from a single image. For predicting
chairs, we took the renderings of Choy et al. [5] and cre-
ated ground truth shapes of higher resolution from the cor-
responding ShapeNet [4] models using binvox [36]. Since
most images of cars found on the web are recorded from

different camera positions than the renderings of Choy et
al., we re-rendered the car shapes from ShapeNet with ran-
dom camera positions (focal length ∈ [40mm, 90mm), az-
imuth ∈ [0◦, 360◦), elevation ∈ [0◦, 25◦]) and environment
maps collected from the web1,2. We find that Matryoshka
networks generalize well to real-world imagery even when
only trained on synthetic images. They are able to recon-
struct thin structures (e.g., the legs of the right-most chair
in Fig. 10) and a wide variety of shapes (both Figs. 10 and
11).

Synthetic images. We show more results for predicting 3D
shapes of high resolution in Figs. 13 (airplanes), 14 (chairs),
and 12 (cars). The input images are renderings from Choy
et al. [5] and the shapes have been converted to binary voxel
grids using binvox [36]. The ground truth car shapes have

1http://www.hdrlabs.com/sibl/archive.html
2https://hdrihaven.com/



Figure 10: Qualitative results at high resolution (1283) for real-world images of chairs. For a given input image (top
row), our Matryoshka network predicts a 3D shape (bottom row).

Figure 11: Qualitative results at high resolution (1283) for real-world images of cars. For a given input image (top row),
our Matryoshka network predicts a 3D shape (bottom row).

been provided by Tatarchenko et al. [27]. Supporting the
quantitative results from the main paper, learning to recon-
struct 3D shapes at higher resolution produces much more
accurate predictions, as can be seen for different resolutions
in Fig. 12. Even for highly varied classes such as airplanes
or chairs, Matryoshka networks produce high-quality re-
constructions. Finally, we show qualitative examples of re-
constructed shapes at low resolution from a voxel tube net-
work and a Matryoshka network in Fig. 15. Both networks
were trained on 13 categories from ShapeNet-core. Quan-
titative results for this experiment can be found in Tab. 2 in
the main paper.
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Figure 12: Qualitative results at varying resolution. We train Matryoshka networks to reconstruct 3D shapes from a single
image rendered from ShapeNet models (top row) for output resolutions 323, 643, 1283, and 2563. The last row shows the
ground truth shapes at 2563.



Input Matryoshka network at 1283 Ground truth

Figure 13: Qualitative results at high resolution (1283) for airplane images rendered from ShapeNet models.



Input Matryoshka network at 1283 Ground truth

Figure 14: Qualitative results at high resolution (1283) for chair images rendered from ShapeNet models.



Input Voxel tube network at 323 Matryoshka network at 323 Ground truth

Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models. For input images
(left-most row), we predict 3D shapes using a voxel tube network (2nd column) and a Matryoshka network (3rd column).
Ground truth shapes are shown in the right-most column.
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Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models (continued).
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Figure 15: Qualitative results at low resolution (323) for images rendered from ShapeNet models (continued).


